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1. Theory

The peak transmissibility of a real vibration system occurs at its resonant frequency fr; and the
natural frequency fn would coincide with the resonant frequency if the damping were zero. For
small values of damping, frequencies fn and fr are close but, from time to time, they become a
matter of disputation among vibration engineers (what frequency is greater and how much). In
books on vibration theory, the relationship between the two is analyzed only for viscous damping
[1–4, etc.]. However, the loss factor may be governed by multiple energy dissipation mechanisms
(in particular for rigid constructions, by hysteresis and structural dissipation) [5–15, etc.]. In this
paper, a general close-form relationship between the resonant and natural frequencies is derived.
The resonant frequency is normally measured on sweep-sine shaker testing. Consider a single-

degree-of-freedom vibratory model incorporating two rigid bodies connected with parallel spring
and dashpot. One body simulates the shaker and moves harmonically with a displacement Y0 ¼
y0 expðiotÞ; the differential equation for the displacement Y ¼ y expðiotÞ of the other body (with
mass M) takes the form

M .Y þ KðY � Y0Þ ¼ 0; ð1Þ

where o ¼ 2pf is the angular frequency and f is the frequency of vibration; K ¼ kð1þ iZÞ is the
complex spring constant combining the spring constant k and loss factor Z: In particular for
viscous damping, the loss factor equals Z ¼ 2ðc=ccÞðf =fnÞ where the quantities c and cc ¼ 2

ffiffiffiffiffiffiffiffi
Mk

p
denote the coefficient of viscous damping and the critical damping [1]. For rigid structures, the
total loss factor commonly includes two main components: the internal loss factor caused by
hysteresis, and the structural loss factor resulting from the vibration energy absorption at
junctures, edges, and adjacent structures. In particular for single walls, partitions, glazing, etc. the
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total loss factor is described [8,9] by equation

Z ¼
2a
kbL

þ Zi: ð2Þ

Here, ZiEconst is the internal loss factor determined by hysteresis, kbp

ffiffiffi
f

p
is the wavenumber of

bending waves, the length L ¼ pA=P; where A and P are respectively the area and perimeter of the
plate, and a is the average coefficient of vibration energy absorption at plate’s edges; for building
structures, the parameter a measures about 0.1–0.3. It follows from Eq. (2) and is experimentally
confirmed [10] that, the structural loss determined by the first addend can be significant for
smaller plates. At relatively low frequencies, the total loss factor Zp1=

ffiffiffi
f

p
and at high

frequencies, ZEZiEconst: Using the partial solution y ¼ y0ð1þ iZÞ=½1� ðf =fnÞ
2 þ iZ� of the linear

differential equation (1), we calculate the transmissibility

Tðf Þ ¼
y

y0

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

½1� ðf =fnÞ
2�2 þ Z2

s
: ð3Þ

At the frequencies close to the natural frequency and when Z{1; Eq. (3) can be reduced to a
simpler form

Tðf ÞE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4e2 þ Z2

s
; ð4Þ

with the variable e ¼ f =fn � 1; provided that ej j{1: From Eq. (4), the peak transmissibility is
attained at the minimum of the function zðeÞ ¼ 4e2 þ Z2: The necessary condition is the linear
algebraic equation

dzðeÞ
de

¼ 8eþ 2Z
dZ
de

¼ 0

with the only solution e1 ¼ �ðZ dZ=deÞ=4: Thus, the ratio of the resonant and natural frequencies
is

fr

fn

¼ 1þ e1 ¼ 1�
fnðZ dZ=df Þ

4
; ð5Þ

where the derivative is calculated at frequency f ¼ fn: Let us now consider that the loss factor at
frequencies close to the natural frequency is described by a simple power function

Z ¼ bf p; ð6Þ

where p ¼ 1 for the classical case of viscous friction, p ¼ �1=2 for structural damping, and p ¼ 0
for the hysteresis type of friction. Substituting formula (6) in Eq. (5) we obtain the clear practical
result

fr

fn

E1�
pZ2

4
: ð7Þ

From Eq. (7), the resonant frequency falls below the natural frequency in case of viscous
friction and exceeds it if the structural loss prevails; under hysteresis, the resonant and natural
frequencies coincide.
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2. Conclusions

The general relationship between the resonant and natural frequencies was derived as a
function of the loss factor Z (that can be measured) in the practical case Z{1; and described by
Eq. (5) or in the simplified case (6) by Eq. (7). The resonant frequency may exceed, equal, or fall
below the natural frequency depending on the main type of friction in a single-degree-of-freedom
vibratory system, however the difference between the two frequencies is minor.
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